

IUVA Americas Conference February 26-28, 2018 Redondo Beach, California, USA

Treatment of Emerging Contaminants by UV/H₂O₂ in Water Reuse Applications

Ying Huang¹, <u>Xiaodi Duan</u>^{1*}, Yiqing Liu¹, Wael Abdelraheem¹, Kristin H. Cochran², Scott Coffin³, Genbo Xu³, Susan D.
Richardson², Daniel Schlenk³, and Dionysios D. Dionysiou^{1*}

¹Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, US ²Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, US ³Department of Environmental Sciences, University of California, Riverside, California, 92521, US

³Department of Environmental Sciences, University of California, Riverside, California 92521, US ***Email:** *dionysios.d.dionysiou@uc.edu*

Background (contaminants of emerging concern)

Diclofenac

- A non-steroidal antiinflammatory drug (NSAID).
- LD₅₀=390mg/kg (orally in mice).

Estrone

- > An estrogenic hormone.
- Carcinogenic for human females, and endocrine-disrupting for human males.

Triclosan

- > An antimicrobial agent.
- Potential hazard of endocrinedisrupting chemical.

Bisphenol A

- Used in plastic.
- Potential hazard of endocrinedisrupting chemical.

Ibuprofen

- A non-steroidal antiinflammatory drug (NSAID).
- LD₅₀=636mg/kg (orally in rate);
 740 (orally in mouse).

crine-

OH

A limited number of studies have appeared on the success of removing these compounds with conventional treatments.

Decomposition of a mixture of 5 CECs by UV/H₂O₂

 * OH is non-selective oxidant. The different degradation rates might relate to the different structure.

Decomposition of 5 mixed CECs by UV alone & UV/H₂O₂

 UV/H₂O₂ can remove
 5 CECs much faster than UV alone due to the formed 'OH.

 The feasibility and effectiveness of LED-UV in the activation of H₂O₂.

 $k_{obs} = -\ln\left(\frac{C}{C_0}\right)$: observed pseudo-first order rate

Degradation efficiency of 5 CECs in the mixture is lower than that of individual degradation of 5 CECs, due to the competition for 'OH among them.

Effects of H₂O₂ dose on UV/H₂O₂ process

As the initial concentration of H₂O₂ increased continually from 0.1 mM to 2 mM, k_{obs} increased non-linearly, due to the competition of excess H₂O₂ for 'OH with target contaminants.

Effects of pH on UV/H₂O₂ process

- The optimum pH for most CECs is 6.5 except for triclosan (optimum pH = 8.5).
- Lower degradation rate constant at pH > 6.5 for diclofenac, estrone, bisphenol A, and ibuprofen is because of scavenging of 'OH by the increased OH⁻:

> $^{\circ}OH + OH^{-} \rightarrow O^{\circ-} + H_2O$ (k = 1.2 × 10¹⁰ M⁻¹ s⁻¹)

Higher rate at pH 8.5 for triclosan may be due to the increased photolysis of triclosan.

Cytotoxicity of treated CECs by UV/H₂O₂

The higher the bar, the lower the toxicity.

Although 5 mixed CECs were totally removed after 640 mJ cm⁻² UV fluence, cytotoxicity of 5 mixed CECs did not change after the treatment by UV/H₂O₂, which might be due to the formation of transformation products of these CECs.

Cytotoxicity of treated CECs by UV/H₂O₂ with long UV irradiation

The higher the bar, the lower the toxicity.

Even the treatment time prolonged to 4800 mJ cm⁻² UV fluence, cytotoxicity of 5 mixed CECs did not change after the treatment by UV/H₂O₂.

Cytotoxicity of treated <u>Diclofenac</u> by UV/H₂O₂

- The higher the bar, the lower the toxicity. Measured by LS180 and MCF-7 assay.
- The cytotoxicity of treated diclofenac decreased after the complete degradation by UV/H₂O₂, which might be due to the formation of less toxic transformation products.

Cytotoxicity of treated <u>estrone, triclosan, and</u> <u>bisphenol A</u> by UV/H₂O₂

Cytotoxicity of treated Ibuprofen by UV/H₂O₂

- The higher the bar, the lower the toxicity.
- The untreated Ibuprofen and its transformation products showed very low cytotoxicity in UV/H₂O₂ system.

Benedict, K. B.; McFall, A. S.; Anastasio, C., Quantum Yield of Nitrite from the Photolysis of Aqueous Nitrate above 300 nm. *Environmental Science & Technology* **2017**, *51* (8), 4387-4395.

Mazellier, P.; Leroy, E.; De Laat, J.; Legube, B., Transformation of carbendazim induced by the H2O2/UV system in the presence of hydrogenocarbonate ions: involvement of the carbonate radical. *New Journal of Chemistry* **2002**, *26* (12), 1784-1790.

Application of UV/H₂O₂ to remove 5 mixed CECs in RO permeate

- Degradation of 5 mixed CECs by UV/H₂O₂ in RO permeate that was collected from Orange County Water District.
- Quenching compounds in RO permeate significantly impressed the degradation of CECs by UV/H₂O₂.

Triclosan and diclofenac were able to be efficiently removed from RO permeate by UV/H₂O₂ after 960 mJ cm⁻² UV fluence.

- Estrone needed more time to be totally removed from RO permeate by UV/H_2O_2 .
- Ibuprofen and bisphenol A could not be efficiently removed from RO permeate by UV/H₂O₂ after 5000 mJ cm⁻² UV fluence.

Effects of HCO₃⁻ on UV/H₂O₂ process

 $k_{OH,DCF} = 7.5 \times 10^{9} M^{-1} s^{-1} [1]$ $k_{CO_{3}^{\bullet^{-}},DCF} = 4.8 \times 10^{7} M^{-1} s^{-1}$ $(k_{CO_{3}^{\bullet^{-}},diclofenac} \text{ determined in our lab})$

Degradation rates of diclofenac decreased with the increasing HCO₃⁻:

► $^{\bullet}OH + HCO_3^{2-} \rightarrow CO_3^{\bullet-} + H_2O = k_{\cdot OH, HCO_3^{-}} = 8.5 \times 10^6 M^{-1} s^{-1} [2]$

[1] Huber, M. M.; Canonica, S.; Park, G.-Y.; von Gunten, U., Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. *Environmental Science & Technology* **2003**, *37* (5), 1016-1024.

[2] Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B., Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O–) in Aqueous Solution. *Journal of Physical and Chemical Reference Data* **1988**, *17* (2), 513-886.

Effects of HCO₃⁻ on UV/H₂O₂ process

Degradation rates of triclosan did not change obviously with the increasing HCO₃⁻:

► $^{\circ}OH + CO_3^{2-} \rightarrow CO_3^{\bullet-} + H_2O = k_{\cdot OH, HCO_3^-} = 8.5 \times 10^6 M^{-1} s^{-1} [2]$

[1] Huber, M. M.; Canonica, S.; Park, G.-Y.; von Gunten, U., Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. *Environmental Science & Technology* **2003**, *37* (5), 1016-1024.

[2] Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B., Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O–) in Aqueous Solution. Journal of Physical and Chemical Reference Data **1988**, *17* (2), 513-886.

Effects of NO₃⁻ on UV/H₂O₂ process

Degradation rates of diclofenac and triclosan did not change significantly with the increasing NO₃⁻.

 NO₃⁻ can also be activated by UV photolysis to produce 'OH.

Benedict, K. B.; McFall, A. S.; Anastasio, C., Quantum Yield of Nitrite from the Photolysis of Aqueous Nitrate above 300 nm. *Environmental Science & Technology* **2017**, *51* (8), 4387-4395.

 \triangleright NO₃⁻⁺ hv \rightarrow NO₃⁻⁺

$$\succ$$
 NO₃^{-*} \rightarrow NO₂ + $^{\circ}$ O⁻

 \succ $^{\circ}O^{-} + H_2O \rightarrow ^{\circ}OH + OH^{-}$

Effects of NOM on UV/H₂O₂ process

Degradation rates of diclofenac and triclosan markedly decreased with the increasing amount of NOM.

► $^{\circ}$ OH + NOM \rightarrow Products = 2.23 × 10⁸ L (mol C)⁻¹ s⁻¹

Compared to HCO₃⁻, NO₃⁻, and Cl⁻, NOM will be the primary quenching compounds in field water matrix.

Westerhoff, P.; Mezyk, S. P.; Cooper, W. J.; Minakata, D., Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. *Environmental Science & Technology* **2007**, *41* (13), 4640-4646.

Conclusions

- UV/H₂O₂ can remove 5 CECs much faster than UV alone due to the formed 'OH.
- Although the 5 mixed CECs were totally removed, cytotoxicity of them did not decrease after the treatment of UV/H₂O₂ at pH = 7, even with longer UV irradiation time. Transformation products would be analyzed to further study the impacts on human and ecological health.
- UV/H₂O₂ treatment shows to be more effective for diclofenac, triclosan, and estrone than for ibuprofen and bisphenol in RO permeate.
- The HCO₃⁻ slightly inhibited the degradation of diclofenac while it did not affect the degradation of triclosan by UV/H₂O₂; NO₃⁻ did affect the decomposation of diclofenac nor triclosan; NOM could significantly impress the removal efficiency of both diclofenac and triclosan.

Acknowledgements

Financial support from the USGS-WRRI (2015SC101G).

Help from Orange County Water District

